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A spectral method of self-consistent field theory has been applied to AB cyclic block copolymers.
Phase behaviors of cyclic diblock copolymers, such as order-disorder transition, order-order tran-
sition, and domain spacing size, have been studied, showing good consistency with previous ex-
perimental and theoretical results. Compared to linear diblocks, cyclic diblocks are harder to phase
separate due to the topological constraint of the ring structure. A direct disorder-to-cylinder transition
window is observed in the phase diagram, which is significantly different from the mean field phase
diagram of linear diblock copolymers. The domain spacing size ratio between cyclic and linear di-
block copolymers is typically close to 0.707, indicating in segregation that the cyclic polymer can be
considered to be made up of linear diblocks with half of the original chain length. © 2011 American
Institute of Physics. [doi:10.1063/1.3657437]

I. INTRODUCTION

Cyclic polymers, which are polymer chains with end seg-
ments being connected such that a ring is formed, are in-
teresting materials with properties distinguished from linear
polymers.1 The promising properties of cyclic polymers es-
sentially arise from their distinct conformational and dynamic
properties in solution and melt states. Computer simulations
have revealed that cyclic polymers adopt more compact con-
formations than their linear counterparts in melt state.2–5 For
example, the mean radii of gyration of cyclic polymers in
melt state, Rg, scales with the molecular weight N as Rg

∝ Nv with v ≈ 0.39 ± 0.03.2 This has been confirmed by re-
cent experiments of small-angle neutron scattering for cyclic
and linear poly(dimethylsiloxane) (PDMS), which showed
that cyclic polymers indeed take more compact conforma-
tion: Rg ∝ N0.4 for cyclic PDMS, while Rg ∝ N0.5 for lin-
ear PDMS.6 In solution, it was found that the hydrodynamic
volume of cyclic polymers is smaller than that of their lin-
ear counterparts, leading to lower intrinsic viscosity.7 The
dynamic behaviors of cyclic polymers in melt are also dis-
tinctive. Cyclic polymers usually diffuse faster and their melt
viscosity and plateau modulus are much lower than those of
corresponding linear polymers.3, 4, 8–10

Block copolymers with cyclic architectures (cyclic block
copolymers or block copolymer rings) only become a sub-
ject for study in recent years because of great difficulty in
synthesis.1, 11 Cyclic block copolymers are copolymers with
no chain end, i.e., a copolymer ring is formed in each poly-
mer. With this ring architecture, AB cyclic block copoly-
mers can only assume looped conformation in both disordered
and phase-separated states, inducing remarkable differences
in phase behaviors as compared to their linear counterparts.

a)Author to whom correspondence should be addressed. Electronic mail:
fengqiu@fudan.edu.cn.

It is expected that the order-disorder transition (ODT)
will occur at larger χN for cyclic block copolymers than their
linear counterparts, where χ is the Flory-Huggins parame-
ter and N is the chain length. Mean-field theory with random
phase approximation (RPA) showed that the critical point for
cyclic diblock copolymer ((χN)c = 17.8) is about 1.7 times
larger than that for linear diblock ((χN)c = 10.5).12 Com-
puter simulations also read larger (χN)ODT for cyclic poly-
mers due to the finite chain length used, e.g., (χN)ODT = 45
from dissipative particle dynamics (DPD) simulation13 and
(χN)ODT = 42 from Monte Carlo simulation.14 Experiments
on polystyrene-b-polyisoprene (PS-PI) diblock copolymers
with PS volume fraction equaling 0.78 also showed a little
larger (χN)ODT for cyclic copolymers than the linear one.15

Cyclization of linear block copolymers usually re-
sults in morphological transformation both in melts and in
solution.15–18 Even if, with same chain length and composi-
tion, same phase structures are formed from linear and cyclic
block copolymers, these phases always show different sizes
of domain spacing.12, 14, 16, 19, 20 For example, the ratio of do-
main spacing of a PS-PI cyclic copolymer and its linear
copolymer was found to be 0.61.20 Based on Leibler’s the-
ory and random-phase approximation, Marko predicted that
the lamellar spacing ratio of a cyclic to its corresponding di-
block copolymer is about 0.67 in the weak segregation limit
and about 0.63 in the strong segregation limit.12 Monte Carlo
simulations also concluded that the ratio of the domain spac-
ing between the cyclic diblock copolymer and the correspond-
ing linear diblock is 0.7.14

Although advances in synthesis and phase behavior of
cyclic block copolymers have been achieved, a full under-
standing of its equilibrium behavior is far from reach. Theo-
retical phase diagram, especially based on self-consistent field
theory (SCFT), of AB cyclic diblock copolymers is still ab-
sent. In this paper, we use SCFT to calculate the phase dia-
gram of AB cyclic diblock copolymers.
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SCFT has been one of the most successful theories
for description of equilibrium behaviors of inhomogeneous
polymers.21 Its application covers a wide range from block
copolymers to polymer blends, concentrated polymer solu-
tion, polymer brush etc. In SCFT, the key elements are to
calculate the single chain partition function and chain prop-
agator, in terms of which almost all thermodynamic prop-
erties (such as free energy) and thus phase behaviors can
be determined.21 For non-cyclic polymers, including linear,
star-shaped, comb-like copolymers, etc, end-integrated chain
propagators are defined and are sufficient for description of
topologies of these polymers. For cyclic polymers, however,
non-end-integrated chain propagators must be introduced for
accurately describing the cyclic topology. As a consequence,
additional degrees of freedom, leading to much more compu-
tational cost if the SCFT equations are solved in real space,
are emerged. Therefore, more efficient numerical method is
needed in case of cyclic polymers. Here, we adopt the spec-
tral method,22 which has been proven to be a powerful ap-
proach in accurate calculation of thermodynamic properties.
We will show that the additional degrees of freedom can be
analytically integrated out in spectral method, leading to al-
most the same computational cost for cyclic polymers as for
linear polymers. Using the spectral method, we have estab-
lished phase diagram of AB cyclic diblock copolymers. Dis-
tinct features of cyclic block copolymers in terms of ODT and
domain spacing size are also discussed.

II. THEORY

The model system consists of n AB cyclic diblock
copolymers with polymer length N in volume V. The A
monomer volume fraction is f. We assume that the A- and B-
monomer have the same volume, 1/ρ0, and also the same sta-
tistical segment length, b. The conformation of the ith chain
is described by a space curve, Ri(s), s ∈ [0, 1]. Then, the par-
tition function in canonical ensemble is written as

Z ∼
∫

D {R (•)}P {R (•)} δ[1 − φ̂A − φ̂B] exp[−W/kBT ],

(1)
with

P {R (•)} =
∏

i

exp

[
− 3

2Nb2

∫ 1

0
ds

(
dRi (s)

ds

)2
]
, (2)

where R(•) ≡ {R1(•), R2(•) , . . . , Rn(•)} (Ri(•) represents
the conformation of the ith chain) denotes the chain configu-
ration. The last term in Eq. (1), W, is the contribution from
monomer interactions, and W = kBT χρ0

∫
drφ̂A(r)φ̂B(r),

where χ is the Flory-Huggins parameter. The segment den-
sity operator φ̂A(r) is defined as

φ̂A(r) = N

ρ0

n∑
i=1

∫ f

0
dsδ (r − Ri(s)). (3)

and φ̂B(r) has similar definition with s ranging from f to 1. Af-
ter taking the particle-to-field transformation,21 external fields
ωA(r) and ωB(r) conjugated, respectively, to the density fields
φA(r) and φB(r) are introduced, then the partition function is
expressed as a functional integral of the density and external

fields,

Z ∼
∫

D {φ} D {ω} exp[−F ({φ} , {ω})/kBT ], (4)

where the functional F is represented as

F ({φ} , {ω}) = ρ0R
3
gkBT

N

{
−V ln Q +

∫
dr [χNφA (r) φB (r)

−ωA (r) φA (r) − ωB (r) φB (r)]

}
. (5)

The single-chain partition function Q is given as

Q = 1

V

∫
D (Ri (s)) P (Ri (s)) exp

[
−

∫ 1

0
dsω (Ri (s))

]
.

(6)

For mathematical convenience, forward and backward
chain propagators are defined, respectively, as

q (r, s |r0 ) ≡
∫

D {R(•)} P {R(•)}

× exp

[
−

∑
α

∫ s

0
dtωα(R(t))γα(t)

]

× δ (r − R(s)) δ (r0 − R(0)) , (7)

q† (r, s |r0 ) ≡
∫

D {R(•)} P {R(•)}

× exp

[
−

∑
α

∫ 1

s

dtωα(R(t))γα(t)

]

× δ (r − R(s)) δ (r0 − R(1)) , (8)

in which the type of monomer α is constrained by γ α(t),
α = A, B, with

γα (t) = δA,α t ∈ (0, f ) ,

γα (t) = δB,α t ∈ (f, 1) .

The second δ-functions in Eqs. (7) and (8) ensure the
cyclic structure of the block copolymer. With these defini-
tions, the partition function can be written as

Q = 1

V

∫
dr

∫
dr0q (r, s |r0 ) q† (r, s |r0 ) . (9)

Obviously, the two chain propagators obey the following
modified diffusion equations:

∂

∂s
q (r, s |r0 ) = R2

g∇2q (r, s |r0 ) − ω (r) q (r, s |r0 ) ,

(10)

∂

∂s
q† (r, s |r0 ) = −R2

g∇2q† (r, s |r0 ) + ω (r) q† (r, s |r0 ) .

(11)
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For cyclic copolymers considered here, the initial condi-
tions for the above modified diffusion equations are

q (r, 0 |r0 ) = δ (r − r0) , q† (r, 1 |r0 ) = δ (r − r0) ,

(12)

where r0 is the spatial coordinate of the segment that con-
nects the head (s = 0) and tail (s = 1) in a cyclic chain. Then,
the above two equations should be solved under sets of initial
conditions where r0 ∈ 
, 
 denote the computational space
(with its volume equal to V).

By mean-field approximation, obtained are the following
(SCFT) equations:

φA (r) = 1

Q

∫ f

0
ds

∫
dr0q (r, s |r0 ) q† (r, s |r0 ), (13)

φB (r) = 1

Q

∫ 1

f

ds

∫
dr0q (r, s |r0 ) q† (r, s |r0 ), (14)

ωA(r) = χNφB(r) + η(r), (15)

ωB(r) = χNφA(r) + η(r), (16)

φA(r) + φB(r) = 1. (17)

It is obvious from Eqs. (10)–(17) that the additional de-
gree of freedom, r0, would cause significantly larger compu-
tational cost when numerically solved in real space. This has
made the real-space method impractical in dealing with cyclic
chains.23

Here, we solve the SCFT equations with the spec-
tral method22 which will be proven an optimal method
for SCFT of cyclic polymers. Specifically, in the spectral
method, any spatially varying function is expanded as or-
thonormal basis functions which have certain symmetries be-
ing considered. For example, the chain propagator q (r, s |r0 )
= ∑

j qj (s |r0 )fj (r), where V−1
∫

fi(r)fj(r)dr = δij and ∇2fi(r)
= −λiD−2fi(r), fi(r) is the basis function and D is the length
scale (in unit of Rg) of the computational box. The basis func-
tions are arranged such that λi is listed in an increasing way
with λ1 = 0. Then, differential equations (10) and (11) can be
expressed as

∂qi(s |r0 )

∂s
= −

∑
j

Hij qj (s |r0 ), (18)

∂q
†
i (s |r0 )

∂s
=

∑
j

Hij q
†
j (s |r0 ), (19)

with initial conditions

qj (0 |r0 ) = fj (r0)/V , q
†
j (1 |r0 ) = fj (r0)/V . (20)

The Hamiltonians are

Hij = λiD
−2δGi ,Gj

+
∑

k

ωα,k(s)ijk, (21)

ijk = 1

V

∫
fi(r)fj (r)fk(r)dr. (22)

In the same way, segment density fields and external
fields are expressed as

φA (r) =
∑

i

φA,ifi (r); φB (r) =
∑

i

φB,ifi (r),

ωA (r) =
∑

i

ωA,ifi (r); ωB (r) =
∑

i

ωB,ifi (r).

The solutions of the above ordinary differential equa-
tions (18) and (19) become

qi (s |r0 ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
j

TA,ij (s) qj (0 |r0 ), s ∈ (0, f )

∑
j

TB,ij (s − f ) qj (f |r0 ), s ∈ (f, 1)
, (23)

q
†
i (s |r0 ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
j

TB,ij (1 − s) q
†
j (1 |r0 ), s ∈ (f, 1)

∑
j

TA,ij (f − s) q
†
j (f |r0 ), s ∈ (0, f )

, (24)

where Tij is the element of matrix T, and T(s) = exp [Hs]. The
single-chain partition function is given as

Q =
∫

dr0

∑
i

qi (s |r0 ) q
†
i (s |r0 ), for ∀s. (25)

The coefficients for density fields are represented as

φA,i = 1

Q

∫ f

0
ds

∫
dr0

∑
j

∑
k

qj (s |r0 ) q
†
k (s |r0 ) ijk,

(26)

φB,i = 1

Q

∫ 1

f

ds

∫
dr0

∑
j

∑
k

qj (s |r0 ) q
†
k (s |r0 ) ijk.

(27)

More specifically, after expressing the matrix T in terms
of its eigenvectors U (its element is denoted as Uij) and eigen-
values D (its element is denoted as di), T = U exp [−Ds]U†,
the density fields are given as

φA,i = 1

V Q

∑
j

∑
k

ijk

∑
a

∑
b

∑
c

∑
d

∑
e

UA,jcUA,kdUB,be

UT
A,caU

T
A,dbU

T
B,ea

e−dA,cf − e−dA,d f

dA,d − dA,c

e−dB,e(1−f ), (28)

φB,i = 1

V Q

∑
j

∑
k

ijk

∑
a

∑
b

∑
c

∑
d

∑
e

UB,jbUB,kdUA,ae

UT
B,dcU

T
B,baU

T
A,ec

e−dB,b(1−f ) − e−dB,d (1−f )

dB,d − dB,b

e−dA,ef ,

(29)
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Q = 1

V

∑
i

∑
j

UA,ij exp(−dA,j f )UT
A,j i . (30)

The free energy can be written as

F

nkBT
= − ln Q − χN

∑
i

φA,iφB,i . (31)

The coefficients for external field are determined self-
consistently:

ωA,i = χNφB,i + ηi,

ωB,i = χNφA,i + ηi,

φA,i + φB,i = δi1.

It can be seen that segment density coefficients
(Eqs. (28) and (29)) are also expressed in terms of eigenvec-
tors and eigenvalues of the Hamiltonian as in case of linear di-
block copolymers.22 Therefore, no additional computational
cost is induced for cyclic diblock copolymers.

For establishing phase diagram of cyclic diblock copoly-
mers, five candidate phases are considered: disordered, lamel-
lae, hexagonally arranged cylinders, body-centered cubic
sphere, and gyroid. Then the stable phases are obtained as
the phases with minimum free energy with respect to D (the
length scale of computational box) for any molecular param-
eters (f, χN).

III. RESULTS AND DISCUSSION

A. Phase diagram

The calculated phase diagram of AB cyclic diblock
copolymers is shown in Fig. 1, where lamellae (L), hexagonal
cylinder (C), body-centered-cubic sphere (S), gyroid (G), and
disordered phase (D) are considered as candidates. Due to
large number of basis functions needed in very strong segre-
gation region, we calculated the phase diagram only up to χN

FIG. 1. SCFT phase diagram of AB cyclic diblock copolymers, in which
phase boundaries of lamellae (L), hexagonal cylinder (C), gyroid (G), body-
centered-cubic sphere (S), and disorder (D) are shown. χ is the Flory-
Huggins parameter, N is the polymerization index of block copolymers, and
f is the volume fraction of A monomer in the system.

= 80, and C-G and G-L phase boundaries are not actually de-
termined for 40 ≤ χN ≤ 80 for the same reason. We just sim-
ply extrapolate these phase boundaries from χN = 40 to 80.
Note that 130 basis functions are used during the SCFT calcu-
lations. It appears that the shape of the phase diagram is sim-
ilar to the linear one. Nevertheless, there are several features
that distinguish it from the phase diagram of linear diblock
copolymers. Firstly, (χN)ODT for cyclic diblocks is signifi-
cantly larger than the corresponding linear one. For example,
the critical point for cyclic diblock is χN = 15.7 and that
for linear diblock is χN = 10.5. Secondly, the sphere phases
end at triple points: χN = 24.1 with f = 0.275 and 0.725.
Thus, there is a large compositional window (f : 0.275–0.725)
through which direct disorder-to-cylinder transition occurs.
Such window does not exist in the phase diagram of linear
diblock copolymers. Finally, the phase diagram of cyclic
diblock copolymers seems “thinner” than that of the linear
one, which means stronger interaction parameter in cyclic di-
blocks is necessary to exhibit the same microphase-separation
behavior as in linear diblocks with the same composition.

Up to now, although experimental studies on phase be-
haviors of cyclic diblock copolymers have been carried out
for years, they are limited to few cases, including polystyrene-
b-poly(dimethylsi1oxane),19 polyisoprene-b-polystyrene (PI-
PS),24 and polystyrene-b-polybutadiene (PS-PBD).16 More
importantly, owning to limited compositional versatility of
cyclic diblock copolymers studied, only three ordered phases
(lamellae, cylinder, and sphere) have been observed. The
lamellae phase is always found in near symmetric cyclic di-
block copolymers (f = 0.48–0.53),16, 19, 24, 25 except a PS-PBD
cyclic copolymer with f = 0.378.16 Considering that the χN
values of the PS-PBD cyclic diblock copolymers under inves-
tigation are in range of 52–81 at room temperature and 40–61
at the sample annealing temperature,16 the observed lamel-
lae phase with f = 0.378 for PS-PBD is justified according to
our SCFT phase diagram. For cylinder structure, the volume
fraction of the samples is located at 0.24 (Ref. 16) and 0.30
(Ref. 24) for PS-PBD and PI-PS, respectively, which could
be deduced from the SCFT phase diagram. The experimental
results showed that the sphere phase is observed at f = 0.13
and 0.108 for PI-PS (Ref. 24) and PS-PBD (Ref. 16) cyclic di-
block copolymers, respectively. It is obvious from the SCFT
phase diagram that the (χN)ODT (corresponding to disorder-
to-sphere transition) at these two volume fractions are 52.1
and 62.9, respectively. Therefore, we can expect if the χN
values of the PI-PS and PS-PBD cyclic diblocks are greater
than 52.1 and 62.9, respectively, sphere phase should be ob-
served. This expectation is supported by the experiment since
the calculated (χN)ODT falls into the estimated χN region of
the PS-PBD cyclic diblocks where sphere phase occurred.16

The phase diagram from SCFT calculation can also
be compared to those from Leibler’s theory26 and DPD
simulations.13 Morozov et al. calculated the phase diagram of
AB cyclic diblock copolymers via Leibler’s mean field the-
ory, which is in qualitative agreement with our results. In
its phase diagram, a composition window (f = 0.33–0.67)
of direct transition from disordered phase to cylinders was
also found. The notable difference between the phase dia-
grams from Leibler’s theory and SCFT is that the (χN)ODT
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FIG. 2. Order-disorder transitions (ODT) of cyclic and linear diblock
copolymers from SCFT calculation.

for the former is higher than the latter. Based on DPD simu-
lations, Qian et al. also reported a phase diagram of cyclic
copolymers.13 In their results, the stable morphologies in-
cluded lamellae, perforated lamellae, hexagonally arranged
cylinders, and spheres. They also found that a direct disorder-
to-cylinder transition occurs at 0.2 < f < 0.35. Note that
significantly larger (χN)ODT values in their phase diagram
might be due to the finite chain length used in their DPD
simulations.

B. Order-disorder transition

Figure 2 compared the ODT behavior of cyclic and lin-
ear diblocks. It can be seen that the (χN)ODT line of cyclic
diblock copolymers always stays above that of linear diblock
copolymers, indicating that cyclic copolymers need stronger
segregation (larger χN or lower temperature in most cases)
than linear copolymers to be phase-separated. In a cyclic
chain, the two blocks are connected with two junctions rather
than only one in linear block copolymers. This topological
constraint makes the two block subchains in cyclic diblocks
closer neighbors that are harder to be phase-separated, there-
fore stronger repulsive interaction is needed.

C. Domain size

Near the G-L transition, the ratio of domain sizes of G
phase to L phase, DG/DL, is ranging from 2.47 to 2.40 when
χN is increasing from 18 to 40. Note that it is almost the same
value for the ratio in AB linear diblock copolymers.22 This re-
sult implies that cyclic topology of diblock copolymers makes
no significant difference on the ratio of characteristic sizes of
different phases, although it certainly affects their character-
istic sizes themselves. Other values for such ratio are DG/DC

= 2.15–2.19 for χN = 18–40, and DS/DC = 1.21–1.15 for
χN = 27–80. We note that these theoretical predictions need
experimental verifications in the future.

It is expected that cyclization of linear block copoly-
mers can lead to different structural behaviors. Experimen-
tal and theoretical results have concluded that the domain
spacing size of cyclic copolymers is smaller than their lin-
ear counterpart due to the molecular architecture of cyclic

FIG. 3. Influence of χN upon domain spacing ratio of AB cyclic block
copolymers and corresponding linear diblock copolymers in melts.

polymers.12, 14, 16, 19, 20, 24 Figure 3 shows domain spacing size
ratio between cyclic and linear diblock copolymers, where
lamellae and cylinder phase are considered. It appears that do-
main spacing ratios for both phases are near 0.67, decreasing
slightly with increasing χN. Note that theoretical prediction
from RPA gives the ratio as 0.67 in weak segregation limit,
which decreases to 0.63 in strong segregation limit.12 Experi-
mental results also confirm this conclusion.20 The smaller do-
main size of cyclic block copolymers is readily explained. In
any phase-separated structures, AB cyclic copolymers should
adopt only loop conformation due to their ring architec-
ture. For AB linear diblocks, however, only bridge confor-
mation is valid. Consequently, the effective chain length of
cyclic copolymers seems to be shortened to almost half of
the corresponding AB linear polymers, leading to Rg,linear

= √
2Rg,cyclic. Then, the domain size ratio of cyclic to lin-

ear diblock copolymer is about Rg,cyclic/Rg,linear = 1/
√

2
≈ 0.707, as compared to the RPA prediction, 0.67. ABA
linear triblock copolymers stand as an intermediate one, in
which both loop and bridge conformations are allowed, re-
sulting in almost the same domain size as their corresponding
cyclic chains.24

D. Conformational statistics

It is well known that the chain conformation plays an
important role in physical properties of polymeric materi-
als. Therefore, it is necessary to illuminate conformational
behaviors of cyclic polymers in melt and solution states. In
disordered melt state, conclusion has been made from both
experiment and simulations that cyclic polymers show more
compact conformation than linear polymers.2–6 In phase-
separated states, however, the conformational characteristic
of cyclic block copolymers is not clear. Due to topological
distinction, we expect that there is a different conformational
feature for cyclic block copolymers. Monte Carlo simulation
results show that cyclic diblock copolymers in lamellar phase
are strongly stretched perpendicularly to the interface.27 With
decreasing temperature, the radius of the mass center of two
blocks in cyclic copolymers increases by about 20%–25%,
while the end-to-end vector of the blocks decreases by almost
15%.27 As a comparison with the Monte Carlo simulations,
we also define the end-to-end distance of the two blocks in
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FIG. 4. The effect of χN on the end-to-end distance of the two blocks (in
unit of Rg) for a symmetric cyclic diblock. The inset sketches the end-to-end
distance of the two blocks.

FIG. 5. The effect of χN on the middle-segments distance of the two blocks
(in unit of Rg) for a symmetric cyclic diblock. The inset sketches the middle-
segments distance of the two blocks.

the framework of SCFT as following:

〈
Rblock

end

〉 =
[∫

dr
∫

dr0q (r, f | r0) q† (r, f | r0) (r − r0)2∫
dr

∫
dr0q (r, f | r0) q† (r, f | r0)

]1/2

. (32)

For simplicity, only lamellar phase of symmetric cyclic diblock copolymers (f = 0.50) is investigated as in the Monte Carlo
simulation.27 In addition to the end-to-end distance, the distance of two middle segments of the two blocks can be defined as

〈
Rblock

mid

〉 =
[∫

dr
∫

dr0q (r, f/2| r0) q† (r, f/2| r0) (r⊥ − r0,⊥)2∫
dr

∫
dr0q (r, f/2| r0) q†(r, f/2| r0)

]1/2

+
[∫

dr
∫

dr0q (r, (1 + f )/2| r0) q† (r, (1 + f )2| r0) (r⊥ − r0,⊥)2∫
dr

∫
dr0q (r, (1 + f )2| r0) q† (r, (1 + f )/2| r0)

]1/2

. (33)

For lamellar phase of symmetric cyclic diblock copolymers, Eq. (33) is simplified as

〈
Rblock

mid

〉 = 2

[∫
dr

∫
dr0q (r, 1/4| r0) q† (r, 1/4| r0) (r⊥ − r0,⊥)2∫

dr
∫

dr0q (r, 1/4| r0) q† (r, 1/4| r0)

]1/2

, (34)

where r⊥ and r0, ⊥ are the spatial position of the middle seg-
ment and the junction segment of blocks along axis perpen-
dicular to the interface of lamellae, respectively. The effects of
interaction parameter χN on the conformation characteristics
〈Rblock

end 〉 and 〈Rblock
mid 〉 are shown in Figs. 4 and 5, respectively.

It is found that 〈Rblock
end 〉 decreases by about 10% with increas-

ing χN from 20 to 80, while 〈Rblock
mid 〉 increases by about 7%.

These findings indicate that stretched chain conformation is
formed in phase-separated states of cyclic block copolymers,
which is in qualitative agreement with the results of Monte
Carlo simulation.27

IV. SUMMARY

We have calculated the phase diagram for AB cyclic
block copolymers based on self-consistent field theory. A
spectral method was adopted to achieve accuracy and effi-
ciency. Phase behaviors of cyclic block copolymers, such as
order-disorder transition, order-order transition, domain spac-
ing size, have been studied, showing good consistency with
previous experimental and theoretical results. Compared to
linear diblock copolymers, cyclic diblocks are harder to phase
separate due to the topological constraint of the ring structure,

as indicated by their higher (χN)ODT. Furthermore, a direct
disorder-to-cylinder transition window (f : 0.275–0.725) is ob-
served in the phase diagram, which is significantly different
from the mean field phase diagram of linear diblock copoly-
mers. The domain spacing size ratio between cyclic and lin-
ear diblock copolymers is typically close to 1/

√
2, indicating

in segregation that a cyclic polymer with chain length N can
be considered to be made up of a linear diblock with chain
length N/2. Finally, cyclic diblock copolymers are strongly
stretched along the direction perpendicular to the interface in
phase-separated states.
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